22 Eylül 2012 Cumartesi

pKa, part 3: ccCA in NWChem. Doing something wrong?

First of all, I'm having problems reproducing the output from 'task ccca' by following the methods described in J. Chem. Theory Comput 2008, 4, 328-334 (scaling 0.9854) or Mol. Phys. 2009,107(8-12),1107-1121. The discrepancies are the energies reported for the MP2/cc-pVTZ-DK and CCSD(T)/cc-PVTZ which leads to a difference in calculated relativistic and correlation corrections. More about that at some other time.

Here's using ccCA in NWChem on acetic acid/acetate and formic acid/formate.
More about how it works in another post.

Basically, the way I am using it the results are very, very poor with  ccCA. All I can think is that I must be doing something wrong.


INPUT files 

Acetic acid input:

Title "aceticacid"Start  aceticacidechocharge 0geometry autosym units angstrom C     -0.312051     -1.36877     0.00000 H     -0.929226     -1.55822     -0.878253 H     -0.929226     -1.55822     0.878253 H     0.548700     -2.02934     0.00000 C     0.150590     0.0606620     0.00000 O     -0.897092     0.922315     0.00000 H     -0.521850     1.81528     0.00000 O     1.29371     0.435169     0.00000endbasis* library "cc-pvtz"enddft  mult 1  direct  noio  XC b3lyp  grid fine  mullikenenddriver  defaultendccca  optimizeendtask ccca

Acetate input:

Title "acetate_ccca"Start  acetate_cccaechocharge -1geometry autosym units angstrom C     -0.0311237     -1.36218     0.00000 H     0.501926     -1.73727     0.878691 H     0.501926     -1.73727     -0.878691 H     -1.05131     -1.75101     0.00000 C     -0.00500996     0.204086     0.00000 O     1.14247     0.706045     0.00000 O     -1.12049     0.771493     0.00000endbasis* library "cc-pvtz"enddft  mult 1  direct  noio  XC b3lyp  grid fine  mullikenenddriver  defaultendccca   optimizeendtask ccca

Formic acid input:
Title "formicacid"Start  formicacidechocharge 0geometry autosym units angstrom C     0.410955     -0.132154     0.00000 H     1.50430     -0.0475164     0.00000 O     -0.134104     1.09718     0.00000 H     -1.09846     0.988665     0.00000 O     -0.203188     -1.15938     0.00000endbasic* library "cc-pvtz"enddft  mult 1  direct  noio  XC b3lyp  grid fine  mullikenenddriverendccca   optimizeendtask ccca

Formate input:
Title "formate"Start  formateechocharge -1geometry autosym units angstrom C     0.00000     0.00000     0.329396 H     0.00000     0.00000     1.47310 O     -1.13532     0.00000     -0.189103 O     1.13532     0.00000     -0.189103endbasis "ao basis" spherical print* library "cc-pvtz"ENDdft  mult 1  direct  noio  XC b3lyp  grid fine  mullikenenddriverendccca   optimizeendtask ccca

OUTPUT 

Acetic acid
 Temperature                      =   298.15K frequency scaling parameter      =   0.9889 Zero-Point correction to Energy  =   38.155 kcal/mol  (  0.060805 au) Thermal correction to Energy     =   41.060 kcal/mol  (  0.065434 au) Thermal correction to Enthalpy   =   41.653 kcal/mol  (  0.066378 au) Total Entropy                    =   69.467 cal/mol-K   - Translational                =   38.179 cal/mol-K (mol. weight =  60.0211)    - Rotational                   =   23.830 cal/mol-K (symmetry #  =        1)   - Vibrational                  =    7.458 cal/mol-K Cv (constant volume heat capacity) =   14.439 cal/mol-K   - Translational                  =    2.979 cal/mol-K   - Rotational                     =    2.979 cal/mol-K   - Vibrational                    =    8.480 cal/mol-K ccCA: calculations done, now printing results  ccCA-P  reference energy =   -228.82035086993045      ccCA-S3 reference energy =   -228.82800135561300      ccCA-S4 reference energy =   -228.82030423449530      ccCA-PS3 reference energy=   -228.82417611277174      DK correction            =  -0.13322049012506909      CCSD(T) correction       =   -4.8762979862686961E-002 CV correction            =  -0.20936881324035994      --------------------------- Total ccCA-P   energy    =   -229.21170315315857      Total ccCA-S3  energy    =   -229.21935363884111      Total ccCA-S4  energy    =   -229.21165651772341      Total ccCA-PS3 energy    =   -229.21552839599985       Thermochemistry available:            ZPE   =   6.0851792771826778E-002 ccCA-P   E+ZPE   =  -229.15085136038675      ccCA-S3  E+ZPE   =  -229.15850184606930      ccCA-S4  E+ZPE   =  -229.15080472495160      ccCA-PS3 E+ZPE   =  -229.15467660322804      Wrote ccCA-P    energy to the RTDB  Leaving ccCA module... Task  times  cpu:     5565.6s     wall:     5650.7s

Acetate

 Temperature                      =   298.15K frequency scaling parameter      =   0.9889 Zero-Point correction to Energy  =   29.591 kcal/mol  (  0.047157 au) Thermal correction to Energy     =   31.853 kcal/mol  (  0.050762 au) Thermal correction to Enthalpy   =   32.446 kcal/mol  (  0.051706 au) Total Entropy                    =   64.067 cal/mol-K   - Translational                =   38.129 cal/mol-K (mol. weight =  59.0133)   - Rotational                   =   23.739 cal/mol-K (symmetry #  =        1)   - Vibrational                  =    2.199 cal/mol-K Cv (constant volume heat capacity) =   11.235 cal/mol-K   - Translational                  =    2.979 cal/mol-K   - Rotational                     =    2.979 cal/mol-K   - Vibrational                    =    5.276 cal/mol-K ccCA: calculations done, now printing results  ccCA-P  reference energy =   -228.25857936176124      ccCA-S3 reference energy =   -228.26625083689740      ccCA-S4 reference energy =   -228.25849407721080      ccCA-PS3 reference energy=   -228.26241509932930      DK correction            =  -0.13318127658752132      CCSD(T) correction       =   -4.4728554700242285E-002 CV correction            =  -0.20921905251765338      --------------------------- Total ccCA-P   energy    =   -228.64570824556665      Total ccCA-S3  energy    =   -228.65337972070282      Total ccCA-S4  energy    =   -228.64562296101622      Total ccCA-PS3 energy    =   -228.64954398313472       Thermochemistry available:            ZPE   =   4.7193435242008613E-002 ccCA-P   E+ZPE   =  -228.59851481032464      ccCA-S3  E+ZPE   =  -228.60618628546081      ccCA-S4  E+ZPE   =  -228.59842952577421      ccCA-PS3 E+ZPE   =  -228.60235054789271      Wrote ccCA-P    energy to the RTDB  Leaving ccCA module... Task  times  cpu:     3859.1s     wall:     3910.2s


Formic acid

 Temperature                      =   298.15K frequency scaling parameter      =   0.9889 Zero-Point correction to Energy  =   20.909 kcal/mol  (  0.033320 au) Thermal correction to Energy     =   22.902 kcal/mol  (  0.036497 au) Thermal correction to Enthalpy   =   23.495 kcal/mol  (  0.037441 au) Total Entropy                    =   59.329 cal/mol-K   - Translational                =   37.387 cal/mol-K (mol. weight =  46.0055)    - Rotational                   =   21.008 cal/mol-K (symmetry #  =        1)   - Vibrational                  =    0.934 cal/mol-K Cv (constant volume heat capacity) =    8.703 cal/mol-K   - Translational                  =    2.979 cal/mol-K   - Rotational                     =    2.979 cal/mol-K   - Vibrational                    =    2.744 cal/mol-K ccCA: calculations done, now printing results ccCA-P  reference energy =   -189.56748775122853 ccCA-S3 reference energy =   -189.57364633780318 ccCA-S4 reference energy =   -189.56733835209894 ccCA-PS3 reference energy=   -189.57056704451585 DK correction            =  -0.11856238070660652 CCSD(T) correction       =   -3.0831132609506540E-002 CV correction            =  -0.16057296161548607 --------------------------- Total ccCA-P   energy    =   -189.87745422616013 Total ccCA-S3  energy    =   -189.88361281273478 Total ccCA-S4  energy    =   -189.87730482703054 Total ccCA-PS3 energy    =   -189.88053351944745 Thermochemistry available:            ZPE   =   3.3346398704552728E-002 ccCA-P   E+ZPE   =  -189.84410782745556 ccCA-S3  E+ZPE   =  -189.85026641403022 ccCA-S4  E+ZPE   =  -189.84395842832598 ccCA-PS3 E+ZPE   =  -189.84718712074289 Wrote ccCA-P    energy to the RTDB Leaving ccCA module... Task  times  cpu:     1369.3s     wall:     1407.5s

Formate
 Temperature                      =   298.15K frequency scaling parameter      =   0.9889 Zero-Point correction to Energy  =   12.385 kcal/mol  (  0.019737 au) Thermal correction to Energy     =   14.252 kcal/mol  (  0.022713 au) Thermal correction to Enthalpy   =   14.845 kcal/mol  (  0.023656 au) Total Entropy                    =   56.927 cal/mol-K   - Translational                =   37.321 cal/mol-K (mol. weight =  44.9976)   - Rotational                   =   19.229 cal/mol-K (symmetry #  =        2)   - Vibrational                  =    0.377 cal/mol-K Cv (constant volume heat capacity) =    7.310 cal/mol-K   - Translational                  =    2.979 cal/mol-K   - Rotational                     =    2.979 cal/mol-K   - Vibrational                    =    1.351 cal/mol-K ccCA: calculations done, now printing results  ccCA-P  reference energy =   -189.01189831122844      ccCA-S3 reference energy =   -189.01808726799254      ccCA-S4 reference energy =   -189.01171261173857      ccCA-PS3 reference energy=   -189.01499278961049      DK correction            =  -0.11851294005154500      CCSD(T) correction       =   -2.6430727035545942E-002 CV correction            =  -0.16057463040127118      --------------------------- Total ccCA-P   energy    =   -189.31741660871680      Total ccCA-S3  energy    =   -189.32360556548090      Total ccCA-S4  energy    =   -189.31723090922694      Total ccCA-PS3 energy    =   -189.32051108709885       Thermochemistry available:            ZPE   =   1.9751889903778755E-002 ccCA-P   E+ZPE   =  -189.29766471881302     
 ccCA-S3  E+ZPE   =  -189.30385367557713      ccCA-S4  E+ZPE   =  -189.29747901932316      ccCA-PS3 E+ZPE   =  -189.30075919719508      Wrote ccCA-P    energy to the RTDB  Leaving ccCA module...

Solvation energy

Solvation energy may seem easy to calculate, but difficult to calculate accurately using implicit methods, in particular for ions. I used the optimized structures from above, and then did a single-point COSMO (rsolv 0. Not ideal)  at RDFT(b3lyp)/cc-pVTZ/

Acetic acid: -8.59 kcal/mol
Acetate: -72.33 kcal/mol
Formic acid: -8.90
Formate: -72.59 kcal/mol
H+: -624.61 kcal/mol (lit. value)


Free energies:  
G: ccCA-P+(Hcorr-T*Scorr)
 G(acetic acid): -229.21170315315857*627.503+(41.653-298.15*69.467/1000)-8.59
 G(acetate): -228.64570824556665*627.503+(32.446-298.15*64.067/1000)-72.33
 G(formic acid): -189.87745422616013*627.503+(23.495-298.15*59.329/1000)-8.90
 G(formate):  -189.31741660871680*627.503+(14.845-298.15*56.927/1000)-72.59
 G(H+): -6.28 kcal/mol (lit. value) -264.61 (lit. value)=-270.89 kcal/mol


Results: Direct approach:
Don't forget to account for the standard state. R=1.9858775(34)×10−3 kcal/(K.mol)
DG(acetic/acetate)=G(acetate)+G(H+)-G(acetic)+RT*ln(1/24.46)=
(-228.64570824556665*627.503+(32.446-298.15*64.067/1000)-72.33-270.89)-(-229.21170315315857*627.503+(41.653-298.15*69.467/1000)-8.59)+1.9858775*298.15*log(1/24.46)/1000=
11.0435795929699 kcal/mol=46.2063370169861 kJ/mol =>
pKa=DG*log10(e)/RT=
11.0435795929699*log10(e)/(1.9858775*10**(-3)*298.15)
=8.1 (which is very bad -- it should be close to 4.75)

DG(formic/formate)=G(formate)+G(H+)-G(formic)-RT*ln(1/24.46)=
(-189.31741660871680*627.503+(14.845-298.15*56.927/1000)-72.59-270.89)-(-189.87745422616013*627.503+(23.495-298.15*59.329/1000)-8.90)+1.9858775*298.15*log(1/24.46)/1000=
7.01850845285312 kcal/mol=29.3654393667375 kJ/mol
pKa=5.1 (which is quite bad -- it should be close to 3.75)


Results: Isodesmic approach
From an older post:
"Assuming that we know that formic acid has a pKa of 3.75, then DG_solution=pKa*RT/log(e)=3.75*8.314*298.15/log10(e)/1000=21.404 kJ/mol. The reverse reaction is -21.404 kJ/mol."
That's about 5.116 kcal/mol

DG(acetate)+DG(formic)-(DG(acetic)+DG(formate))+DG(ref)=
((-228.64570824556665*627.503+(32.446-298.15*64.067/1000)-72.33)+(-189.87745422616013*627.503+(23.495-298.15*59.329/1000)-8.90))-((-229.21170315315857*627.503+(41.653-298.15*69.467/1000)-8.59)+(-189.31741660871680*627.503+(14.845-298.15*56.927/1000)-72.59))+5.116=
4.02507114014588 kcal/mol+5.116 kcal/mol =9.14107114014588 kcal/mol <=> pKa= 6.7
Which is better, but still not as good as here.

Using the E+zpe energies doesn't help much:
((-228.59851481032464*627.503+(32.446-298.15*64.067/1000)-72.33)+(-189.84410782745556*627.503+(23.495-298.15*59.329/1000)-8.90))-((-229.15085136038675*627.503+(41.653-298.15*69.467/1000)-8.59)+(-189.29766471881302*627.503+(14.845-298.15*56.927/1000)-72.59))+5.116=
9.10100587110175 kcal/mol <=> pKa=6.68

I really have no idea why the results are so bad when I had reasonable results with DFT/b3lyp/6-31++G** which should be worse than the E(CBS)+E(CC)+E(CV)+E(DK) approach for calculating electronic energies.

Solvation energies are a bit different and could explain some of the difference. Using the solvation energies from here I got:
((-228.64570824556665*627.503+(32.446-298.15*64.067/1000)-73.23)+(-189.87745422616013*627.503+(23.495-298.15*59.329/1000)-9.99))-((-229.21170315315857*627.503+(41.653-298.15*69.467/1000)-9.32)+(-189.31741660871680*627.503+(14.845-298.15*56.927/1000)-72.47))+5.116=
7.76107114008302 kcal/mol <=> pKa=5.69. Not 4.75, but closer.

Using rsolv 1.3 I get((-228.64570824556665*627.503+(32.446-298.15*64.067/1000)-71.09)+(-189.87745422616013*627.503+(23.495-298.15*59.329/1000)-6.37))-((-229.21170315315857*627.503+(41.653-298.15*69.467/1000)-6.53)+(-189.31741660871680*627.503+(14.845-298.15*56.927/1000)-71.90))+5.116=
10.1610711401063 kcal/mol which is bad.

More thinking.
  This paper says that the gas phase free energy for the deprotonation of acetic acid should be 341.1 kcal/mol
(-228.64570824556665*627.503+(32.446-298.15*64.067/1000)-6.82)-(-229.21170315315857*627.503+(41.653-298.15*69.467/1000))=340.75 kca/mol
We're within 1 kcal/mol 

The same paper states 338.5 kcal/mol for formic acid:
(-189.31741660871680*627.503+(14.845-298.15*56.927/1000)-6.82)-(-189.87745422616013*627.503+(23.495-298.15*59.329/1000))=336.67 kca/mol

For our direct solution phase pKa calculation formic acid was off by about 1.9 kcal/mol which is similar to the error here.

Hiç yorum yok:

Yorum Gönder